skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alemzadeh, Siavash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Control of networked systems, comprised of interacting agents, is often achieved through modeling the underlying interactions. Constructing accurate models of such interactions–in the meantime–can become prohibitive in applications. Data-driven control methods avoid such complications by directly synthesizing a controller from the observed data. In this paper, we propose an algorithm referred to as Data-driven Structured Policy Iteration (D2SPI), for synthesizing an efficient feedback mechanism that respects the sparsity pattern induced by the underlying interaction network. In particular, our algorithm uses temporary “auxiliary” communication links in order to enable the required information exchange on a (smaller) sub-network during the “learning phase”—links that will be removed subsequently for the final distributed feedback synthesis. We then proceed to show that the learned policy results in a stabilizing structured policy for the entire network. Our analysis is then followed by showing the stability and convergence of the proposed distributed policies throughout the learning phase, exploiting a construct referred to as the “Patterned monoid.” The performance of D2SPI is then demonstrated using representative simulation scenarios. 
    more » « less